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ABSTRACT

A new version of the Global Ensemble Forecast System (GEFS, v11) is tested and compared with the

operational version (v10) in a 2-yr parallel run. The breeding-based scheme with ensemble transformation

and rescaling (ETR) used in the operational GEFS is replaced by the ensemble Kalman filter (EnKF) to

generate initial ensemble perturbations. The global medium-range forecast model and the Global Forecast

System (GFS) analysis used as the initial conditions are upgraded to the GFS 2015 implementation version.

The horizontal resolution of GEFS increases from Eulerian T254 (;52 km) for the first 8 days of the forecast

and T190 (;70 km) for the second 8 days to semi-Lagrangian T574 (;34 km) and T382 (;52 km),

respectively. The sigma pressure hybrid vertical layers increase from 42 to 64 levels. The verification of ge-

opotential height, temperature, and wind fields at selected levels shows that the new GEFS significantly

outperforms the operational GEFS up to days 8–10 except for an increased warm bias over land in the

extratropics. It is also found that the parallel system has better reliability in the short-range probability

forecasts of precipitation during warm seasons, but no clear improvement in cold seasons. There is a signif-

icant degradation of TC track forecasts at days 6–7 during the 2012–14 TC seasons over the Atlantic and

eastern Pacific. This degradation is most likely a sampling issue from a low number of TCs during these three

TC seasons. The results for an extended verification period (2011–14) and the recent two hurricane seasons

(2015 and 2016) are generally positive. The new GEFS became operational at NCEP on 2 December 2015.

1. Introduction

The Global Ensemble Forecast System (GEFS) has

been one of themost important components of NOAA’s

environmental prediction operational systems since its

implementation in 1993 (Toth and Kalnay 1993, 1997).

The forecast skill of the GEFS has been improved sig-

nificantly since then, benefiting from upgrades in en-

semble initial perturbation generation (Wei et al. 2006,

2008), the inclusion of stochastic model perturbations

(Hou et al. 2006), higher model resolution, and larger

ensemble size, as well as continuous improvement of the

Global Forecast System (GFS) model (Han and Pan

2011; Juang 2011, 2014; Yang et al. 2006, 2008) and the

Global Data Assimilation System (GDAS; Wu et al.

2002; Kleist et al. 2009a,b; Wang et al. 2013; Kleist and

Ide 2015).

GEFS has a long history of using the breeding scheme

to generate ensemble perturbations accounting for the

uncertainty of initial conditions for medium-range en-

semble prediction (Toth and Kalnay 1993, 1997; Kalnay

2001, chapter 6). The basic idea of the breeding method

is to simulate the development of growing errors in the
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analysis cycle. The ensemble perturbations derived from

the difference of the short-range forecasts between the

ensemble member and ensemble mean evolve with the

time-dependent analysis fields with periodic rescaling as

the breeding cycle moving forward. After a few days of

cycling, the perturbations are expected to sample fast-

growing errors in the analysis that are primarily re-

sponsible for forecast error growth.

In theGEFS implementation of 2005,Wei et al. (2006,

2008) introduced an ensemble transformation with re-

scaling (ETR) technique into the breeding method.

Forecast perturbations from the breeding cycles are

multiplied by a transformation matrix in order to make

analysis perturbations globally orthogonal and consis-

tent. The method is subject to limitations due to the

relatively small size of the ensemble and the analysis

error covariance needing to be provided by the user. It is

expected that the ensemble-based perturbations with

ETR span more directions than breeding vectors (BVs).

Verification shows that ETR outperforms BV in terms

of various probability forecast scores (Wei et al. 2008).

Anothermajor source ofmodel forecast uncertainty is

from the model itself. Such uncertainty is rooted in the

limitations in the computation representation of the

equations of motion of the atmosphere, such as the use

of finite-resolution, unresolved subgrid parameteriza-

tions. The stochastic total tendency perturbation

(STTP) scheme (Hou et al. 2006) was used to represent

model uncertainty in GEFS, in which stochastic forcing

is added every 6 h to the total tendencies of the model

variables [temperature, specific humidity, and winds;

Hou et al. (2006, 2008)]. First, the temporal change of

the total tendency for each ensemble member and the

control is calculated within a 6-h time interval. Then, the

differences in the temporal change between each en-

semble member and the control are used to perturb the

total tendency after a multiplication by a random num-

ber and the application of an additional rescaling factor.

The scaling factor is a function of location and lead time.

Generally, the extratropics have larger perturbations

than the tropics, and the perturbations grow with lead

time. The inclusion of the model uncertainty increases

the ensemble spread, reduces the RMSE, and improves

the probability forecast skills (Hou et al. 2006). It was

implemented in GEFS in 2012.

One of the major operational upgrades to the NCEP

GDAS system at NCEP in May 2012 was the imple-

mentation of a hybrid three-dimensional variational

(3DVAR)–ensemble data assimilation system. The

background error covariance in the variational system is

enhanced with the inclusion of an ensemble-derived

component (75% weight) in addition to the standard

static component (25%weight). Initial perturbations for

generating the ensemble used to derive the flow-

dependent error covariance information are created by

the introduction of a second, independent data assimi-

lation system: the ensemble Kalman filter (EnKF,

Whitaker and Hamill 2002; Whitaker et al. 2008; Wang

et al. 2013, Kleist and Ide 2015; Wu et al. 2002; Kleist

et al. 2009b). A dual-resolution strategy with 3DVAR

and EnKF using different horizontal resolutions was

applied in the hybrid system to reduce computational

costs. The implementation of the hybrid system sub-

stantially improved the quality of the analysis (Kleist

and Ide 2015). The success of EnKF in theNCEPGDAS

provides an alternative source of ensemble initial con-

ditions for the operational GEFS as of the 2015 version.

This study aims at a comprehensive comparison be-

tween the operational GEFS and a new GEFS version.

The main upgrades of the GEFS include the use of

EnKF to generate initial ensemble perturbations, a new

version of the NCEP Global Spectral Model (GSM),

and increased horizontal and vertical resolutions. Sec-

tion 2 presents a brief introduction to the upgrades in the

new GEFS. Section 3 includes the general verification,

the precipitation verification, and the verification of

tropical cyclone track forecasts. The last section includes

our conclusions and some discussion.

2. GEFS upgrade

The 2012 implementation ofGEFS (v10, hereafter the

operational system) was the operational version when

this comparison was performed. GEFS v10 has 20 en-

semble members and one control run. The model uses a

Eulerian horizontal resolution of T254 (;52km) for the

first 8 days of the forecast and T190 (;70km) for the

second 8 days. The new GEFS version (v11, hereafter

the parallel system) has the same ensemble sizes but

uses a semi-Lagrangian model with a linear Gaussian

grid and a resolution of T574 (;34km) for the first

8 days and T384 (;52km) for the second 8 days. The

number of sigma pressure hybrid vertical layers is in-

creased from 42 to 64. The increased resolution is chosen

to fit the wall-clock window in the NCEP operational

environment (about 60min). With the increase in model

resolution, the parallel system provides 0.58 gridded bi-

nary (GRIB2) files at 3-h time intervals for the first

8 days. Table 1 summarizes the major updates in the

parallel system.

The global forecast model in the new GEFS uses the

NCEP GFS/GSM version 12.0.0. (see the detail of the

updates online at http://www.emc.ncep.noaa.gov/GFS/

impl.php). The model configuration for the GEFS with

the low-resolution ensemble forecast (T574) follows

the settings of the high-resolution deterministic GFS

1990 WEATHER AND FORECAST ING VOLUME 32

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/19/23 06:52 PM UTC

http://www.emc.ncep.noaa.gov/GFS/impl.php
http://www.emc.ncep.noaa.gov/GFS/impl.php


(T1534SL L64) implemented on 14 January 2015with the

exception of some resolution-dependent parameters

such as the convective gravity wave drag parameters and

the critical relative humidity for the formation of partial

cloudiness. These parameters are tuned based on the

settings in the previous deterministic GFS operational

version because of its comparable horizontal resolution

(Eulerian T382). The major upgrade of the GSM is in

the replacement of Eulerian dynamics with two time-

level semi-implicit semi-Lagrangian dynamics (Sela

2010). The semi-Lagrangian GSM can use a larger

time step without losing accuracy (Ritchie et al. 1995;

Juang and Hong 2010). The time step applied for the

semi-Lagrangian GFS at T574 with an equivalent hori-

zontal resolution of 34 km is 900 s, which is 3 times lon-

ger than the time step for the operational Eulerian T254

(;52km).

The hybrid GFS analysis used as the initial conditions

for the GEFS control is also updated with the GFS 2015

implementation version. ETR is replaced by EnKF to

generate the initial perturbations for ensemble mem-

bers. The initial conditions for the ensemble members in

the parallel experiment are generated by adding the 6-h

EnKF forecast ensemble perturbations to the analysis.

Note that the 6-h EnKF ensemble forecast perturbations

are used instead of the EnKF analysis perturbations

since EnKF is run as part of the late analysis (GDAS)

cycle rather than the early analysis (GFS) cycle.

Only EnKF forecasts from the previous cycle are

available when GEFS starts in the NCEP operational

environment.

Zhou et al. (2016) compared the GEFS performance

of the initial perturbation generation schemes ETR and

EnKF for the GEFS 2012 implementation version. It

was found that EnKF is comparable with ETR except

for a slight degradation in the Southern Hemisphere as a

result of too much spread. The large spread in EnKF is

generally favorable during data assimilation to avoid

filter divergence but is not favorable for the medium-

range weather forecast. Two inflation methods, ensem-

ble covariance inflation (e.g.,Whitaker andHamill 2002,

2012) and additive noise inflation (e.g., Whitaker et al.

2008; Houtekamer et al. 2005, 2009), are applied to the

posterior ensemble perturbations to account for errors

from other sources (e.g., the GSM).

In the 2015 EnKF implementation, new stochastic

physics schemes were employed to represent model error

to replace the artificial additive inflation. The upgraded

stochastic physics suite has three components, including

1) stochastically perturbed physics tendencies (SPPTs;

Buizza et al. 1999; Palmer 1997, 2001), 2) stochastically

perturbed planetary boundary layer humidity (SHUM),

and 3) stochastic kinetic energy backscatter (SKEB;

Berner et al. 2009; Shutts 2005). All three of these

schemes use an AR(1) random pattern generator to

produce spatially and temporally correlated perturba-

tions with three different horizontal length/time scales

500km/0.25 days, 1000km/3 days and 2000km/30 days.

Figure 1 shows the perturbation amplitude in the 2012

and 2015 EnKF versions and the operational GEFS

ETR. Figure 1b shows that the inflated EnKF pertur-

bations dampen quickly in the 6-h forecast in the 2012

implementation. The amplitude of EnKF perturbations

remains larger than the perturbations in ETR. Figure 1a

indicates that the amplitude of the EnKF perturbations

from the 2015 implementation becomes similar to ETR.

The amplitude of the EnKF perturbations using SPPT

increases during the 6-h forecast, although the growth

rate is rather small. The EnKF perturbation amplitude

from the 2015 implementation is smaller than that from

the 2012 version, especially in the upper troposphere.

The smaller perturbations in the 2015 EnKF im-

plementation are expected to result in an improved

spread–error relationship in GEFS.

The ensemble size is the same in both implementa-

tions (20 ensemble members and one control run). Both

EnKF and ETR have 80 members for each cycle. Four

groups with 20 members each are selected in turn to

initialize four ensemble forecast cycles (0000, 0600,

1200, and 1800 UTC) so that every member is used once

per day.

In both the 2012 operational and the 2015 parallel

GEFS, tropical cyclones (TCs) are separated from the

environment and independently perturbed (Kurihara

TABLE 1. The GEFS configuration in the operational (PROD) and parallel (PARA) runs.

GEFS v10 (PROD) GEFS v11 (PARA)

GFS model Eulerian, 2012 Semi-Lagrangian, 2015

Initial perturbation ETR EnKF

Resolution 0–192 h T254 (52 km) L42 (hybrid) TL574 (34 km) L64 (hybrid)

Resolution 192–384 h T190 (70 km) L42 (hybrid) TL382 (52 km) L64 (hybrid)

Output resolution 18 3 18 0.58 3 0.58 for 0–8 days; 18 3 18 for 8–16 days

Output frequency 6 h 3 h for 0–8 days; 6 h for 8–16 days
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et al. 1993, 1995). The TC perturbations are added to the

analysis after each ensemble member TC vortex is re-

located to the observed location. The TC perturbation

adjustments P to the initial state of each ensemble

member are calculated by using the following formula

(Liu et al. 2000, 2006):

P5C3 (X2X
c
)3 kX

c
k/kX2X

c
k ,

where X represents the model variables of the TC

component of each ensemble member, such as the wind,

temperature, mixing ratio, or sea level pressure; Xc

corresponds to the same variable for the control; and

jjXjj is the square root of the sum of X over the whole

hurricane area. The TC perturbations are calculated

from the difference in TC components between the

ensemble member and the control forecasts. A scaling

factor C is artificially set to 0.05 to reduce the pertur-

bation amplitude, which is about 5%of themagnitude of

the TC component in the control forecasts.

The parameters in the 2015 parallel implementation

STTP scheme are slightly tuned, which is mainly a re-

sult of upgrades to the perturbation scheme and the

increased model resolution. The 2015 configuration

removes perturbations to the surface pressure ten-

dency to avoid numerical instability. Around the time

of model truncation (192 h), the perturbation ampli-

tude of the remaining model state variables is in-

creased to improve the spread–error relationship for

the 8–16-day forecast.

FIG. 1. The vertical profiles of the ensemble perturbation spread for the horizontal wind components averaged over the NH, SH, and

tropics in the (a) 2015 and (b) 2012 EnKF implementations. The ensemble spread is calculated based on 20 ensemble members used for

GEFS instead of 80 EnKF ensemble members. The black line corresponds to the ETR perturbations from the operational GEFS. Three

EnKF profiles represent the spread of EnKF.
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3. Verification

a. General verification

A 2-yr parallel run (June 2013–May 2015, 0000 UTC

cycle only) was performed and compared with the cor-

responding operational forecasts. All of the 20-member

ensemble forecast data are interpolated to a 2.58 3
2.58 latitude–longitude grid. The ensemble forecast

is verified against its own analysis using the NCEP

ensemble verification package (Zhu et al. 1996; Toth

et al. 2003, 2006; Zhu 2005; Zhu and Toth 2008). One

output of the verification package, the scorecard,

summarizes the performance of the forecasts of geo-

potential height at 500 and 1000 hPa; wind fields at

10m, 850 hPa, and 250 hPa; and temperature at 2m

and 850 hPa in the Northern Hemisphere (NH), the

Southern Hemisphere (SH), and the tropics (Fig. 2).

The root-mean-square error (RMSE), pattern anom-

aly correlation (PAC), ensemble mean forecast bias,

and the continuous rank probability score skill

(CRPSS) are used to compare the two systems. A

block bootstrap algorithm (Hamill 1999) is used to test

the statistical significance of the differences. Addi-

tional verifications can be found online (http://www.

emc.ncep.noaa.gov/gc_wmb/xzhou/Para_2013-2015_

test.HTML).

The scorecard shows that the parallel system generally

outperforms the operational system up to day 12 (8) in

the NH (SH) (Fig. 2). The ensemble mean forecasts of

all verified variables are more accurate with significantly

higher CRPSSs in both the NH and SH. These im-

provements are generally statistically significant at the

95% confidence level. Degradation is seen in the prob-

abilistic scores at lead times longer than 12 days, but this

decrease is considered negligible since the probability

forecast skills are already very low at these lead times.

The ensemble mean forecast for wind components

over the tropical region is improved at all lead times with

respect to PAC. However, there is no clear evidence of

systematic improvement in the probability scores of

other variables. Generally, the CRPSS is degraded be-

yond day 3 in the tropics.

FIG. 2. Scorecard comparing the parallel and operational systems, verified against their respective analyses.

Green indicates the parallel system is significantly better and red is significantly worse than the operational system.

Gray means no significant difference. Blue means that the corresponding scores are not calculated.
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Evaluation of the 500-hPa geopotential height field

shows that underdispersion is common in both systems,

especially during week 2 (Fig. 3a). The updated GEFS

has slightly smaller spread than the operational system

in the first week, but is similar in the second week. The

RMSE of 500-hPa geopotential height is significantly

smaller in the NH prior to day 9.

The anomaly correlation of 500-hPa forecasts measures

the overall performance of the ensemble mean in captur-

ing large-scale weather patterns.A threshold value of 0.6 is

regarded as an indication that the locations of troughs and

ridges at 500hPa are well predicted. The new GEFS ex-

tended the skillful forecast from 9 to 9.5 days in terms of

PAC (Fig. 3b). Another threshold examined is one of the

headline scores in ECMWF’s Strategy 2011–2020 (https://

www.ecmwf.int/en/forecasts/quality-our-forecasts), which

is defined as a 500-hPa geopotential anomaly correlation of

0.8. The forecast lead time for this threshold increases from

8.4 to 8.7 days in the newGEFS. Similar improvement can

be found in CRPSS (Fig. 3c).

The new GEFS significantly improves upon the op-

erational version for the first 10 days with respect to the

850-hPa temperatures in the NH. Another ECMWF

headline score is the forecast lead time when the

CRPSS for ensemble probabilistic forecasts of 850-hPa

temperature is greater than 25% for the NH. This score

remains at 8.8 days with a slight increase in the new

GEFS (Fig. 4).

A major concern is the larger surface temperature

bias error in the parallel system. The increase in bias is

consistent with the performance of the high-resolution

GFS deterministic forecast (Yang 2015), which has a

warm and dry bias over some land areas. Figure 5 shows

the absolute error and bias of 2-m temperature for the

FIG. 3. Two-year average verification scores (1 Jun

2013–31 May 2015) for the 500-hPa geopotential height

over the NH: (a) ensemble mean RMSE (solid) and

ensemble standard deviation (dotted), (b) anomaly cor-

relation, and (c) CRPSS. The lower graphs show the

difference and bootstrap significance test (blue bars).

The difference is significant at the 95% confidence level

when the value is outside the bars.
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two GEFS implementations in the NH. They have

the same absolute error, but there is a warmer bias in the

new GEFS implementation.

The time series of 2-m temperature bias over North

America (NA) shows that the bias varies with season

during the 2-yr period (Fig. 6). The large degradation in

terms of surface temperature bias is more evident in the

summer. The 2012 implementation usually has a warm

bias in the summer and a cold bias in the winter. The

parallel system reduces the cold bias in the winter, but

increases the warm bias in the summer. It is suggested by

the GFS development group that the land surface up-

date in the GFS 2015 implementation resulted in lower

soil moisture when the Global Land Data Assimilation

System (GLDAS)/Coupled Forecasting System (CFS)

soil moisture climatology at T574 (;27km) replaced the

18 bucket soil climatology. Evaporation parameters

configured for the drier soil climatology were not re-

tuned as part of the 2015 GFS implementation. This

caused increased sensible heat flux and reduced the la-

tent heat flux in hot air masses over cropland. This was

corrected in the May 2016 GFS implementation.

This kind of systematic model error can be removed

with postprocessing algorithms. Cui et al. (2012)

developed a Kalman filter–type algorithm to calculate

an online decaying average bias and produce a bias-

corrected ensemble. The decaying averaged bias is up-

dated every forecast cycle with the most recent model

forecast given a weight of 2%. Thus, the bias contains

the accumulated information about the behavior of the

ensemble forecasting system in the last 50–60 days. This

postprocessing technique is applied operationally at

NCEP to both NCEP and Meteorological Service of

Canada ensemble forecasts before generating joint

products of the North American Ensemble Forecast

System (NAEFS). This method is also performed for

our parallel experiments to generate bias-corrected en-

semble products. Figure 7 shows the bias-corrected en-

semble forecasts for NH 2-m temperature averaged over

1 yr. The surface temperature spread is seriously un-

derdispersive in both systems, which is a well-known

problem in the field of ensemble forecasting (Buizza

et al. 2000). Note that the RMSE of 2-m temperature

forecasts decreases significantly in the new GEFS. The

horizontal resolution increase is likely responsible for

the improved surface temperature prediction as a result

of more accurate resolved representations of the surface

forcing (i.e., topography, vegetation, land-use fields).

Improvements can be seen in both the operational

and parallel experiments with bias correction. The

RMSE in the bias-corrected parallel forecast is less than

in both the bias-corrected operational forecast and the

uncorrected forecast.

b. Precipitation verification

Quantitative precipitation forecasts (QPFs) and

probabilistic QPFs with uniform 18 horizontal resolution
are verified against the climatology-calibrated pre-

cipitation analysis (CCPA) over the contiguous United

States (CONUS) using both continuous and categorical

verification approaches (Hou et al. 2014). Both contin-

uous and categorical verification methods are used to

assess the skill of the ensemble-based probability pre-

cipitation forecast (http://www.emc.ncep.noaa.gov/gmb/

yluo/GEFS_VRFY/GEFS_PARA_SUMMARY.html).

The continuous verification methods include the

continuous ranked probability score (CRPS), RMSE/

SPREAD, and MERR (mean error)/absolute error.

FIG. 4. As in Fig. 3c, but for 850-hPa temperature.

FIG. 5. Ensemble-mean bias (solid line) and absolute error (dashed

line) of 2-m temperature over the NH.

OCTOBER 2017 NCEP NOTE S 1995

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/19/23 06:52 PM UTC

http://www.emc.ncep.noaa.gov/gmb/yluo/GEFS_VRFY/GEFS_PARA_SUMMARY.html
http://www.emc.ncep.noaa.gov/gmb/yluo/GEFS_VRFY/GEFS_PARA_SUMMARY.html


CRPS measures the area difference between the cu-

mulative distributions of forecasts and observations. For

categorical verification, precipitation is categorized by

the 24-h accumulated precipitation with threshold

amounts greater than 1, 5, 10, and 20mm. The evalua-

tion methods include the Brier score/Brier skill score

(BS/BSS), reliability, bias, the equitable threat score

(ETS), and true skill score (TSS). The BS is either 1 or

0 by measuring the mean-square error of a probability

forecast from the observed probability depending on

whether the categorized event occurred. The BS can

be decomposed into three additive components: un-

certainty, reliability, and resolution (Murphy 1973). In a

perfect forecast, the predicted probabilities should be

exactly equal to the observed probabilities. The BSS

uses the 10-yr mean of CCPA as the climatology to

calibrate the BS and avoids the dependence of BS on the

frequency of the event (Fig. 8). A reliability diagram,

which displays the observed precipitation probabilities

conditioned with the forecast probabilities of all pre-

cipitation forecast samples, provides information about

probability forecast bias for the GEFS (Fig. 9). ETS,

TSS, and bias results are based on the 23 2 contingency

table in which the frequencies of the occurrence of

forecasting precipitation greater or less than the thresh-

olds are counted and calibrated with CCPA.

The performance of the precipitation forecast of the

parallel system is generally similar to that of the op-

erational system. There is no significant difference

between these two systems in terms of CRPS, ETS, and

TSS (not shown). The RMSE and ensemble spread of

the precipitation are greater in the parallel version.

The RMSE results are not presented since they do not

objectively measure the complex spatial distribution

of precipitation. There are some suggestions that the

parallel version has better BS/BSS during the first

3 days (Fig. 8a), less bias during the first week for the light

precipitation forecast (not shown), and greater reliability

FIG. 6. The time series of 2-m temperature bias over NA (a) from 15 May 2013 to 14 May 2014

and (b) from 15 May 2014 to 14 May 2015.
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for short-range forecasts (days 1–3) for precipitation

greater than 1 and 5mm (24h)21 (Fig. 9a). The re-

liability diagram for the parallel version is slightly closer

to the diagonal line. Both systems are overconfident

for the probability forecast of precipitation greater

than 5mm (24 h)21. Careful examination shows that

the better reliability is only seen during the warm sea-

sons (April–October) for the forecast of precipitation

greater than 1 and 5mm (24h)21 at days 1–3, which is

also the main contribution to the higher BSS (Figs. 8a,b

and 9a,b). The performance of the precipitation ensem-

ble forecast is unchanged during the cold seasons (from

November to nextMarch; not shown). The improvement

of the precipitation forecast in the early forecast range is

probably related to the parallel system resolving smaller-

scale features due to an increase of the model horizontal

resolution.

c. Tropical cyclone track forecasts

The TC activity in the 2013 and 2014 North Atlantic

hurricane seasons was well below average. There were

only 8 named TCs in 2014 compared to a climatologi-

cal mean of 12.1. The total number of TCs in 2013 (14)

exceeds the climatology, but only 2 (Hurricanes

Humberto and Ingrid) reached hurricane intensity (6.4

in climatology) with no storms reaching category 2

intensity. To increase the sample, the medium-range

forecasts for the 2011 and 2012 hurricane seasons

(June–October) are included. The cases verified here

include tropical depressions and stronger TCs.

Figure 10 shows the ensemble mean forecast errors of

TC tracks over the North Atlantic, eastern Pacific, and

western North Pacific up to day 7. Themean track errors

over the North Atlantic and eastern Pacific are slightly

smaller in the parallel version up to day 6 and larger

at longer lead times, but the difference is generally

insignificant. The ensemble-mean track forecast error

is significantly reduced over the western North Pacific;

the track error at day 5 is reduced 20% from 250

to 200 nm.

The performance of the TC track forecast varies with

season. One concern is the significant degradation of the

day-6 and day-7 TC track forecasts during the 2012,

2013, and 2014 hurricane seasons in the North Atlantic

(not shown). There are 77 cases for day-6 forecasts, with

61 cases occurring in 2012 and 8 each in 2013 and 2014.

Figure 11 shows the displacements of forecasted TC

positions for day 6 from their observed locations for the

parallel and operational systems. The spread is larger in

the forecast TC location deviations from observation in

the parallel system with more cases having track error

larger than 500 km. The TCs in the parallel system tend

FIG. 7. The RMSE (solid lines) and spread (dashed lines) of raw and bias-corrected 2-m

temperature over the NH for the operational (GEFS v10) and parallel runs (GEFS v11).
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to have larger south and east biases. Note that the

degradation of the parallel system came from the fore-

casts of Hurricanes Nadine (2012), Michael (2012), and

Edouard (2014).

As the fourth longest-lived hurricane over the North

Atlantic (10 September–4 October 2012), Hurricane

Nadine (2012) contributes to 30 of 77 cases of 6-day

forecasts. The TC moved northwestward in its early

stage and then turned northward and eastward later.

Thereafter, Nadine meandered over the ocean, trav-

eling in a clockwise loop and then a counterclockwise

loop before transitioning to an extratropical low sys-

tem. The forecast locations for day-6 forecasts initi-

ated from early in the TCs life cycle were generally

located northwest of the observed locations as a result

of a slower than observed northeastward turning

(Fig. 12a). The eastward deviations resulted from poor

forecasts of the TC’s unusual movement later in its life

cycle. Figure 13a shows that the storm in the parallel

system moved eastward instead of looping cyclonically,

which contributes to larger track forecast errors. Munsell

et al. (2015) suggested that the track forecast during this

time period had low predictability, and the track di-

vergence is related to uncertainty in the environmental

steering flowassociatedwith the position and strength of a

midlatitude trough.

Hurricane Michael (2012) moved northward slowly

after it formed from a mid- to upper-level short-wave

disturbance. It subsequently zigzagged as a result of a

change in the environmental steering flow. The TC in

the parallel system moved to the east instead of the

north, resulting in large track forecast errors (Fig. 12b).

Hurricane Edouard (2014) was steered by the large-

scale flow around a subtropical ridge. The recurvature

from northwestward to northeastward was well predicted

in both the operational and the parallel systems, except

that the parallel system hadmuch slower northward speed

resulting in much larger track errors (Fig. 12c).

FIG. 8. BSS for the precipitation greater than 5mm (24 h)21 averaged over the (a) 2013 warm

season (15 May–15 Oct 2013), (b) 2014 warm season (15May–15 Oct 2014), and (c) 2-yr period

(15 May 2013–14 May 2015).
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The comparison between the operational and parallel

systems continued in terms of TC track forecasts when

the parallel GEFS was undergoing real-time parallel

testing during the 2015 hurricane season and when it

became the operational system during the 2016 hurri-

cane season. Figure 13a shows that the ensemble-mean

track forecast errors are smaller in the parallel system

than in the operational system although the difference is

not statistically different. Similar performance is found

for the 2016 hurricane season. Figure 13b shows that the

track forecasts of Hurricane Matthew (2016), the

strongest, costliest, and deadliest storm of the season,

are more accurate in the parallel system than the oper-

ational system.

4. Conclusions and discussion

An upgrade to the Global Ensemble Forecast System

implemented at NCEP on 2 December 2015 was in-

troduced and a comprehensive verification study com-

paring the upgraded system (termed the parallel system

in this study) to the older operational version (termed

the operational system) was provided. The ETR

scheme, an updated breeding scheme implemented in

the operational GEFS in 2005, was replaced by the

EnKF scheme to generate ensemble initial perturba-

tions in the parallel system. The global forecast model

is upgraded to the same version as the high-resolution

deterministic GFS implemented on 14 January 2015

FIG. 9. Reliability of precipitation . 5mmday21

calculated with the 21 probability categories from

a 21-member ensemble for the (a) 2-yr period,

(b) 2013 warm season, and (c) 2014 warm season. The

top-left inset in each plot shows the proportion of

cases in each probability category.
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with the most notable change from Eulerian to semi-

Lagrangian dynamics (Yang 2015). The model reso-

lution in the parallel system increased from Eulerian

T254 (;52 km) to semi-Lagrangian T574 (;34 km)

and the vertical resolution increased from 42 to 64

levels. Note that the initial conditions in the parallel

GEFS use the 2015 implementation version of the

GFS analysis.

The parallel system is generally more skillful than the

operational system up to days 8–10 over extratropical

regions with respect to the ensemble mean and proba-

bility forecasts of the model variables including geo-

potential height, temperature, and wind fields. The

improvement is significant at the 95% confidence level

as evaluated by a bootstrap test. The parallel system

improved on the operational AC of 500-hPa forecasts by

extending the skillful forecast from 9 to 9.5 days.

The parallel system has a warm surface temperature

bias over the Great Plains in summer. The GFS devel-

opment group suggested that the land surface update in

the 2015 GFS implementation resulted in lower soil

moisture as a result of a change in the soil climatology

FIG. 10. Ensemble-mean track forecast errors for the 2011–14

hurricane seasons over the (a) North Atlantic, (b) eastern Pacific,

and (c) western North Pacific.

FIG. 11. The deviation of the 6-day forecast TC locations from

observation over theNorthAtlantic (2012–14) for the (a) operational

and (b) parallel systems.
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data. This systematic temperature bias can be corrected

by subtracting the decaying averaged bias from the en-

semble raw forecasts (Cui et al. 2012).

The parallel system outperformed the operational

system in forecasting tropical wind components in the

upper and lower layers. The AC scores for the ensemble

mean wind fields are significantly better for 16-day

forecasts. Nevertheless, there is no clear evidence that

the parallel system has a positive impact on the proba-

bility forecasts over the tropics.

The probabilistic forecasts of precipitation over the

CONUS were evaluated against CCPA using both

continuous and categorical verification methods. The

performance of the precipitation forecast is similar be-

tween the parallel and operational systems, except for

higher reliability and BSSs in the short-range forecasts

during the summer. The limited improvement in the

precipitation forecasts is likely related to the similar

physics in these two systems as the major upgrade to the

GFS model was in its dynamics with no significant

changes to the physical processes. A cumulus convection

scheme with scale and aerosol awareness was developed

byHan et al. (2017) and will be implemented inMay 2017

along with other many updates in GSM (v14). This

FIG. 12. The observed TC tracks (hurricane signal) and the 168-h ensemble-mean forecast tracks from successive

forecasts for Hurricanes (a) Nadine, (b) Michael, and (c) Edouard in the (left) operational and (right) parallel

systems.
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scheme improves precipitation forecasts, especially over

the CONUS during the summer.

Based on the statistics of four hurricane seasons (2011–

14), it was found that the parallel system improved the TC

track forecasts over the western North Pacific significantly,

but the improvement over the eastern Pacific and North

Atlantic is very limited. In addition, there is a slight deg-

radation in day-6 and -7 track forecasts, especially for 2012,

2013, and 2014. The large track forecast errors are driven

by three long-lived hurricanes, including Hurricane

Nadine (2012). The degradation of day-6 and -7 track

forecasts in the parallel system is consistent with the per-

formance of the deterministic GFS (not shown), although

the reason for the degradation is not clear. Further com-

parison shows that the GEFS TC track forecasts for the

2015 and 2016 Atlantic hurricane seasons are better in the

parallel system than in the operational system.

The purpose of the comparison was to evaluate the

overall quality of the two ensemble systems rather than

the individual system changes. The contribution of the

individual upgrades to the main change of GEFS

performance is not clear here. The updates of the model

and analysis could improve the overall performance of

GEFS, but the new GEFS also has the same issues as in

the high-resolution GFS deterministic forecast. For ex-

ample, both GEFS and GFS show a warm surface bias

over the CONUS. This systematic bias in the opera-

tional GFS was noticed in the surface temperature

forecast over the Great Plains, and a fix was proposed

and implemented in the 2016 GFS.

The replacement of ETR with EnKF is consistent

with the plan to develop a unified NOAA EMC sys-

tem. However, the performance of operational GEFS

may have inconsistency issues as a result of the use

of the EnKF ensemble to generate the GEFS initial

perturbations. Upgrades to the EnKF could automat-

ically affect the performance of the operational GEFS,

especially when the model perturbations generated

by the model stochastic perturbation scheme (STTP)

are sensitive to the amplitude of the initial perturba-

tions (Zhou et al. 2016). Three alternate stochastic

schemes, SKEB, SPPT, and SHUM, were implemented

for the short-term EnKF-based forecasts used in the data

assimilation cycling. The impact of replacing the opera-

tional STTP scheme with a combination of these three

alternate stochastic schemes for use in theGEFSmedium-

range forecasts is currently under assessment.

Acknowledgments. This work was completed as part

of EMC/NCEP/NWS/NOAA regular work duties. We

thank Glenn White and Jason Sippel for their careful

internal review and Christopher Melhauser for aiding in

an editorial review of the manuscript. We appreciate our

colleagues Shirinvas Mooorthi, Fanglin Yang, et al. at

NCEP/EMC for setting the GFS model configuration.

REFERENCES

Berner, J., G. J. Shutts, M. Leutbecher, and T. N. Palmer, 2009: A

spectral stochastic kinetic energy backscatter scheme and

its impact on flow-dependent predictability in the ECMWF

Ensemble Prediction System. J. Atmos. Sci., 66, 603–626,

doi:10.1175/2008JAS2677.1.

Buizza, R., M. Miller, and T. N. Palmer, 1999: Stochastic repre-

sentation of model uncertainties in the ECMWF Ensemble

Prediction System. Quart. J. Roy. Meteor. Soc., 125, 2887–

2908, doi:10.1002/qj.49712556006.

——, J. Barkmeijer, T. N. Palmer, and D. S. Richardson, 2000:

Current status and future development of the ECMWF

Ensemble Prediction System. Meteor. Appl., 7, 163–175,

doi:10.1017/S1350482700001456.

Cui, B., Z. Toth, Y. Zhu, and D. Hou, 2012: Bias correction for

global ensemble forecast. Wea. Forecasting, 27, 396–410,

doi:10.1175/WAF-D-11-00011.1.

Hamill, T. M., 1999: Hypothesis tests for evaluating numerical

precipitation forecasts. Wea. Forecasting, 14, 155–167,

doi:10.1175/1520-0434(1999)014,0155:HTFENP.2.0.CO;2.

FIG. 13. The ensemble-mean track forecast errors for (a) the

2015 hurricane seasons over the North Atlantic and (b) Hurricane

Matthew (2016).

2002 WEATHER AND FORECAST ING VOLUME 32

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/19/23 06:52 PM UTC

http://dx.doi.org/10.1175/2008JAS2677.1
http://dx.doi.org/10.1002/qj.49712556006
http://dx.doi.org/10.1017/S1350482700001456
http://dx.doi.org/10.1175/WAF-D-11-00011.1
http://dx.doi.org/10.1175/1520-0434(1999)014<0155:HTFENP>2.0.CO;2


Han, J., and H.-L. Pan, 2011: Revision of convection and vertical

diffusion schemes in the NCEP Global Forecast System.Wea.

Forecasting, 26, 520–533, doi:10.1175/WAF-D-10-05038.1.

——, W. Wang, Y. C. Kwon, S.-Y. Hong, V. Tallapragada, and

F. Yang, 2017: Updates in the NCEPGFS cumulus convection

schemes with scale and aerosol awareness. Wea. Forecasting,

https://doi.org/10.1175/WAF-D-17-0046.1, in press.

Hou, D., Z. Toth, and Y. Zhu, 2006: A stochastic parameterization

scheme within NCEP global ensemble forecast system. 18th

Conf. on Probability and Statistics in the Atmospheric Sciences,

Atlanta, GA, Amer. Meteor. Soc., 4.5, https://ams.confex.

com/ams/Annual2006/techprogram/paper_101401.htm.

——, ——, ——, and W. Yang, 2008: Impact of a stochastic pertur-

bation scheme on NCEP Global Ensemble Forecast System.

19th Conf. on Probability and Statistics in the Atmospheric Sci-

ences, New Orleans, LA, Amer. Meteor. Soc., 1.1, https://ams.

confex.com/ams/88Annual/techprogram/paper_134165.htm.

——, and Coauthors, 2014: Climatology-calibrated precipitation

analysis at fine scales: Statistical adjustment of Stage IV to-

ward CPC gauge-based analysis. J. Hydrometeor., 15, 2542–

2557, doi:10.1175/JHM-D-11-065140.1.

Houtekamer,P.L.,H.L.Mitchell,G.Pellerin,M.Buehner,M.Charron,

L. Spacek, and B. Hansen, 2005: Atmospheric data assimilation

with an ensemble Kalman filter: Results with real observations.

Mon. Wea. Rev., 133, 604–620, doi:10.1175/MWR-2864.1.

——, ——, and X. Deng, 2009: Model error representation in an

operational ensemble Kalman filter. Mon. Wea. Rev., 137,

2126–2143, doi:10.1175/2008MWR2737.1.

Juang,H.-M.H., 2011:Amulticonserving discretizationwith enthalpy

as a thermodynamic prognostic variable in generalized hybrid

vertical coordinates for theNCEPGlobal Forecast System.Mon.

Wea. Rev., 139, 1583–1607, doi:10.1175/2010MWR3295.1.

——, 2014: A discretization of deep-atmospheric nonhydrostatic

dynamics on generalized hybrid vertical coordinates for

NCEP global spectral model. NCEP Office Note 477, 39 pp.,

http://www.lib.ncep.noaa.gov/ncepofficenotes/files/on477.pdf.

——, and S.-Y. Hong, 2010: Forward semi-Lagrangian advection

with mass conservation and positive definiteness for falling

hydrometeors. Mon. Wea. Rev., 138, 1778–1791, doi:10.1175/

2009MWR3109.1.

Kalnay, E., 2001: Atmospheric Modeling, Data Assimilation and

Predictability. Cambridge University Press, 368 pp.

Kleist, D. T., and K. Ide, 2015: An OSSE-based evaluation of hy-

brid variational–ensemble data assimilation for the NCEP

GFS. Part I: System description and 3D-hybrid results. Mon.

Wea. Rev., 143, 433–451, doi:10.1175/MWR-D-13-00351.1.

——, D. F. Parrish, J. C. Derber, R. Treadon, R. M. Errico, and

R. Yang, 2009a: Improving incremental balance in the GSI

3DVAR analysis system. Mon. Wea. Rev., 137, 1046–1060,

doi:10.1175/2008MWR2623.1.

——,——,——,——,W. S.Wu, and S. Lord, 2009b: Introduction of

the GSI into the NCEPGlobal Data Assimilation System.Wea.

Forecasting, 24, 1691–1705, doi:10.1175/2009WAF2222201.1.

Kurihara, Y., M. A. Bender, and R. J. Ross, 1993: An initialization

scheme of hurricane models by vortex specification. Mon.

Wea. Rev., 121, 2030–2045, doi:10.1175/1520-0493(1993)121,2030:

AISOHM.2.0.CO;2.

——, ——, R. E. Tuleya, and R. J. Ross, 1995: Improvements in the

GFDL hurricane prediction system. Mon. Wea. Rev., 123, 2791–

2801, doi:10.1175/1520-0493(1995)123,2791:IITGHP.2.0.CO;2.

Liu, Q., T. Marchok, H.-L. Pan, M. Bender, and S. J. Lord, 2000:

Improvements in hurricane initialization and forecasting at

NCEP with global and regional (GFDL) models. NOAA

Tech. Procedures Bull. 472, 7 pp., http://www.nws.noaa.gov/

om/tpb/472.htm.

——, S. J. Lord, N. Surgi, Y. Zhu, R. Wobus, Z. Toth, and

T. Marchok, 2006: Hurricane relocation in global ensemble

forecast system. 27th Conf. on Hurricanes and Tropical Me-

teorology, Monterey, CA, Amer. Meteor. Soc., P5.13, https://

ams.confex.com/ams/pdfpapers/108503.pdf.

Munsell, E. B., J. A. Sippel, S. A. Braun, Y. Weng, and F. Zhang,

2015: Dynamics and predictability of HurricaneNadine (2012)

evaluated through convection-permitting ensemble analysis

and forecasts. Mon. Wea. Rev., 143, 4514–4532, doi:10.1175/

MWR-D-14-00358.1.

Murphy, A. H., 1973: A new vector partition of the

probability score. J. Appl. Meteor., 12, 595–600, doi:10.1175/

1520-0450(1973)012,0595:ANVPOT.2.0.CO;2.

Palmer, T. N., 1997: On parametrizing scales that are only some-

what smaller than the smallest resolved scales, with applica-

tion to convection and orography. Workshop on New Insights

and Approaches to Convective Parametrization, Reading,

United Kingdom, ECMWF, 328–337.

——, 2001: A nonlinear dynamical perspective on model error: A

proposal for non-local stochastic-dynamic parametrization in

weather and climate prediction models.Quart. J. Roy. Meteor.

Soc., 127, 279–304, doi:10.1002/qj.49712757202.

Ritchie, H., C. Temperton, A. Simmons, M. Hortal, T. Davies,

D. Dent, and M. Hamrud, 1995: Implementation of the semi-

Lagrangian method in a high-resolution version of the

ECMWF forecast model. Mon. Wea. Rev., 123, 489–514,

doi:10.1175/1520-0493(1995)123,0489:IOTSLM.2.0.CO;2.

Sela, J., 2010: The derivation of the sigma pressure hybrid co-

ordinates semi-Lagrangian model equations for the GFS.

NCEP Office Note 462, 31 pp., http://www.lib.ncep.noaa.gov/

ncepofficenotes/files/on462.pdf.

Shutts, G., 2005: A kinetic energy backscatter algorithm for use in

ensemble prediction systems.Quart. J. Roy. Meteor. Soc., 131,

3079–3102, doi:10.1256/qj.04.106.

Toth, Z., and E. Kalnay, 1993: Ensemble forecasting at NMC: The

generation of perturbations. Bull. Amer. Meteor. Soc., 74, 2317–

2330, doi:10.1175/1520-0477(1993)074,2317:EFANTG.2.0.CO;2.

——, and ——, 1997: Ensemble forecasting at NCEP and the

breeding method. Mon. Wea. Rev., 125, 3297–3318,

doi:10.1175/1520-0493(1997)125,3297:EFANAT.2.0.CO;2.

——, O. Talagrand, G. Candille, and Y. Zhu, 2003: Probability and

ensemble forecasts.Forecast Verification:APractitioner’sGuide

inAtmospheric Science, I. T. Jolliffe andD.B. Stephenson, Eds.,

John Wiley and Sons, 137–163.

——, ——, and Y. Zhu, 2006: The attributes of forecast sys-

tems. Predictability of Weather and Climate, T. N. Palmer

and R. Hagedorn, Eds., Cambridge University Press, 584–

595.

Wang, X., D. Parrish, D. Kleist, and J. Whitaker, 2013: GSI

3DVar-based ensemble–variational hybrid data assimila-

tion for NCEP Global Forecast System: Single-resolution

experiments. Mon. Wea. Rev., 141, 4098–4117, doi:10.1175/

MWR-D-12-00141.1.

Wei, M., Z. Toth, R. Wobus, Y. Zhu, C. H. Bishop, and X. Wang,

2006: Ensemble transform Kalman filter-based ensemble

perturbations in an operational global prediction system at

NCEP. Tellus, 58A, 28–44, doi:10.1111/j.1600-0870.2006.00159.x.

——,——,——, and——, 2008: Initial perturbations based on the

ensemble transform (ET) technique in the NCEP global

operational forecast systems. Tellus, 60A, 62–79, doi:10.1111/

j.1600-0870.2007.00273.x.

OCTOBER 2017 NCEP NOTE S 2003

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/19/23 06:52 PM UTC

http://dx.doi.org/10.1175/WAF-D-10-05038.1
https://doi.org/10.1175/WAF-D-17-0046.1
https://ams.confex.com/ams/Annual2006/techprogram/paper_101401.htm
https://ams.confex.com/ams/Annual2006/techprogram/paper_101401.htm
https://ams.confex.com/ams/88Annual/techprogram/paper_134165.htm
https://ams.confex.com/ams/88Annual/techprogram/paper_134165.htm
http://dx.doi.org/10.1175/JHM-D-11-065140.1
http://dx.doi.org/10.1175/MWR-2864.1
http://dx.doi.org/10.1175/2008MWR2737.1
http://dx.doi.org/10.1175/2010MWR3295.1
http://www.lib.ncep.noaa.gov/ncepofficenotes/files/on477.pdf
http://dx.doi.org/10.1175/2009MWR3109.1
http://dx.doi.org/10.1175/2009MWR3109.1
http://dx.doi.org/10.1175/MWR-D-13-00351.1
http://dx.doi.org/10.1175/2008MWR2623.1
http://dx.doi.org/10.1175/2009WAF2222201.1
http://dx.doi.org/10.1175/1520-0493(1993)121<2030:AISOHM>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1993)121<2030:AISOHM>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1995)123<2791:IITGHP>2.0.CO;2
http://www.nws.noaa.gov/om/tpb/472.htm
http://www.nws.noaa.gov/om/tpb/472.htm
https://ams.confex.com/ams/pdfpapers/108503.pdf
https://ams.confex.com/ams/pdfpapers/108503.pdf
http://dx.doi.org/10.1175/MWR-D-14-00358.1
http://dx.doi.org/10.1175/MWR-D-14-00358.1
http://dx.doi.org/10.1175/1520-0450(1973)012<0595:ANVPOT>2.0.CO;2
http://dx.doi.org/10.1175/1520-0450(1973)012<0595:ANVPOT>2.0.CO;2
http://dx.doi.org/10.1002/qj.49712757202
http://dx.doi.org/10.1175/1520-0493(1995)123<0489:IOTSLM>2.0.CO;2
http://www.lib.ncep.noaa.gov/ncepofficenotes/files/on462.pdf
http://www.lib.ncep.noaa.gov/ncepofficenotes/files/on462.pdf
http://dx.doi.org/10.1256/qj.04.106
http://dx.doi.org/10.1175/1520-0477(1993)074<2317:EFANTG>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1997)125<3297:EFANAT>2.0.CO;2
http://dx.doi.org/10.1175/MWR-D-12-00141.1
http://dx.doi.org/10.1175/MWR-D-12-00141.1
http://dx.doi.org/10.1111/j.1600-0870.2006.00159.x
http://dx.doi.org/10.1111/j.1600-0870.2007.00273.x
http://dx.doi.org/10.1111/j.1600-0870.2007.00273.x


Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation

without perturbed observations.Mon.Wea. Rev., 130, 1913–1924,

doi:10.1175/1520-0493(2002)130,1913:EDAWPO.2.0.CO;2.

——, and ——, 2012: Evaluating methods to account for system

errors in ensemble data assimilation. Mon. Wea. Rev., 140,

3078–3089, doi:10.1175/MWR-D-11-00276.1.

——, ——, X. Wei, Y. Song, and Z. Toth, 2008: Ensemble data

assimilation with the NCEP Global Forecast System. Mon.

Wea. Rev., 136, 463–482, doi:10.1175/2007MWR2018.1.

Wu, W., R. J. Purser, and D. F. Parrish, 2002: Three-dimensional

variational analysis with spatially inhomogeneous co-

variances. Mon. Wea. Rev., 130, 2905–2916, doi:10.1175/

1520-0493(2002)130,2905:TDVAWS.2.0.CO;2.

Yang, F., 2015: Comparison of forecast skills between NCEP GFS

four cycles and on the value of 06Z and 18Z cycles. 27th Conf.

onWeather Analysis and Forecasting/23rd Conf. on Numerical

Weather Prediction, Chicago, IL, Amer. Meteor. Soc., 15A.1,

https://ams.confex.com/ams/27WAF23NWP/webprogram/

Paper273676.html.

——, H. Pan, S. K. Krueger, S. Moorthi, and S. J. Lord, 2006: Eval-

uation of the NCEP Global Forecast System at the ARM SGP

site. Mon. Wea. Rev., 134, 3668–3690, doi:10.1175/MWR3264.1.

——, K. Mitchell, Y. Hou, Y. Dai, X. Zeng, Z. Wang, and

X. Liang, 2008: Dependence of land surface albedo on solar

zenith angle: Observations and model parameterizations.

J. Appl. Meteor. Climatol., 47, 2963–2982, doi:10.1175/

2008JAMC1843.1.

Zhou, X., Y. Zhu, D. Hou, and D. Kleist, 2016: A comparison of

perturbations from an ensemble transform and an ensemble

Kalman filter for the NCEP Global Ensemble Forecast Sys-

tem. Wea. Forecasting, 31, 2057–2074, https://doi.org/10.1175/

WAF-D-16-0109.1.

Zhu, Y., 2005: Ensemble forecast: A new approach to uncertainty

and predictability. Adv. Atmos. Sci., 22, 781–788, doi:10.1007/
BF02918678.

——, and Z. Toth, 2008: Ensemble based probabilistic forecast

verification. 19th Conf. on Probability and Statistics in

the Atmospheric Sciences, New Orleans, LA, Amer. Meteor.

Soc., 2.2, https://ams.confex.com/ams/88Annual/techprogram/

paper_131645.htm.

——, G. Iyengar, Z. Toth, M. S. Tracton, and T. Marchok, 1996:

Objective evaluation of the NCEP Global Ensemble Fore-

casting System. Preprints, 15th Conf. on Weather Analysis and

Forecasting, Norfolk, VA, Amer. Meteor. Soc., J79–J82.

2004 WEATHER AND FORECAST ING VOLUME 32

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/19/23 06:52 PM UTC

http://dx.doi.org/10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2
http://dx.doi.org/10.1175/MWR-D-11-00276.1
http://dx.doi.org/10.1175/2007MWR2018.1
http://dx.doi.org/10.1175/1520-0493(2002)130<2905:TDVAWS>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(2002)130<2905:TDVAWS>2.0.CO;2
https://ams.confex.com/ams/27WAF23NWP/webprogram/Paper273676.html
https://ams.confex.com/ams/27WAF23NWP/webprogram/Paper273676.html
http://dx.doi.org/10.1175/MWR3264.1
http://dx.doi.org/10.1175/2008JAMC1843.1
http://dx.doi.org/10.1175/2008JAMC1843.1
https://doi.org/10.1175/WAF-D-16-0109.1
https://doi.org/10.1175/WAF-D-16-0109.1
http://dx.doi.org/10.1007/BF02918678
http://dx.doi.org/10.1007/BF02918678
https://ams.confex.com/ams/88Annual/techprogram/paper_131645.htm
https://ams.confex.com/ams/88Annual/techprogram/paper_131645.htm

